I neglecting friction losses, how does a 6-inch diameter water line compare to two 4-inch lines in terms of water transport?

Prepare for the Water Treatment Plant Operator Exam with comprehensive resources. Learn with flashcards, multiple choice questions, and detailed explanations. Ace your test efficiently!

The statement correctly identifies that a single 6-inch diameter water line can transport more water compared to two 4-inch lines when neglecting friction losses. This is based on the concept of cross-sectional area, which is crucial when determining the flow capacity of pipes.

The flow capacity of a pipe is directly related to its diameter; specifically, the cross-sectional area is what determines how much water can flow through it. The formula for the area of a circle is A = π(d/2)², where d is the diameter.

For the 6-inch line, the cross-sectional area can be calculated as follows:

  • Area of 6-inch line: A = π(6/2)² = π(3)² = 9π square inches.

For the two 4-inch lines combined:

  • Area of one 4-inch line: A = π(4/2)² = π(2)² = 4π square inches.
  • Total area for two 4-inch lines: 2 * 4π = 8π square inches.

Now comparing the two:

  • Area of the 6-inch line (9π) is greater than the total area of the two 4-inch lines (8π).
Subscribe

Get the latest from Examzify

You can unsubscribe at any time. Read our privacy policy